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11.7 Improving Eigenvalues and/or Finding
Eigenvectors by Inverse Iteration

The basic idea behind inverse iteration is quite simple. yLbé the solution
of the linear system

(A-71)-y=b (11.7.9

whereb is a random vector and is close to some eigenvalueof A. Then the
solutiony will be close to the eigenvector corresponding\to The procedure can
be iterated: Replack by y and solve for a new, which will be even closer to
the true eigenvector.

We can see why this works by expanding bgtandb as linear combinations
of the eigenvectors; of A:

y=>Y aX; b= 8 (11.7.2
J J
Then (11.7.1) gives
i =X =D 65X (11.7.3
j j
so that
0= (11.7.4
J /\j - T
and
_N B
y=2.3 =5 (11.7.5

If 7 is close to),, say, then provided,, is not accidentally too smaly will be

approximatelyx,,, up to a normalization. Moreover, each iteration of this procedure
gives another power of; — 7 in the denominator of (11.7.5). Thus the convergence

is rapid for well-separated eigenvalues.
Suppose at théth stage of iteration we are solving the equation

(A —71) -y = Dby (11.7.6

whereb;, and 7, are our current guesses for some eigenvector and eigenvalue o

interest (let's sayx,, and \,). Normalizeb; so thatb; - by = 1. The exact
eigenvector and eigenvalue satisfy
A X, = A\ Xn (11.7.7
S0
(A =7,1) X = (A — T )Xn (11.7.8

Sincey of (11.7.6) is an improved approximationxg,, we normalize it and set

bst = |l (11.7.9
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488 Chapter 11.  Eigensystems

We get an improved estimate of the eigenvalue by substituting our improved guess
y for x,, in (11.7.8). By (11.7.6), the left-hand sidehs,, so calling),, our new
value 741, we find

1
(JY

While the above formulas look simple enough, in practice the implementation 2
can be quite tricky. The first question to be resolvedtien to use inverse iteration.
Most of the computational load occurs in solving the linear system (11.7.6). Thus:
a possible strategy is first to reduce the ma#ifo a special form that allows easy
solution of (11.7.6). Tridiagonal form for symmetric matrices or Hessenberg for ¢
nonsymmetric are the obvious choices. Then apply inverse iteration to generat
all the eigenvectors. While this is an(/N3) method for symmetric matrices, it
is many times less efficient than tli¢l, method given earlier. In fact, even the
best inverse iteration packages are less efficient tharthenethod as soon as
more than about 25 percent of the eigenvectors are required. Accordingly, invers
iteration is generally used when one already has good eigenvalues and wants on
a few selected eigenvectors.
You can write a simple inverse iteration routine yourself usiig decompo-
sition to solve (11.7.6). You can decide whether to use the gehérahlgorithm
we gave in Chapter 2 or whether to take advantage of tridiagonal or Hessenber
form. Note that, since the linear system (11.7.6) is nearly singular, you must be:
careful to use a version dfU decomposition like that i§2.3 which replaces a zero
pivot with a very small nhumber.
We have chosen not to give a general inverse iteration routine in this book
because it is quite cumbersome to take account of all the cases that can aris
Routines are given, for example,[h2]. If you use these, or write your own routine,
you may appreciate the following pointers.
One starts by supplying an initial valug for the eigenvalue\,, of interest.
Choose a random normalized vechyy as the initial guess for the eigenvecioy,
and solve (11.7.6). The new vectpiis bigger tharb, by a “growth factor”|y|,
which ideally should be large. Equivalently, the change in the eigenvalue, which by
(11.7.10) is essentially/ |y|, should be small. The following cases can arise:
o If the growth factor is too small initially, then we assume we have made
a “bad” choice of random vector. This can happen not just because of
a smallj3, in (11.7.5), but also in the case of a defective matrix, when
(11.7.5) does not even apply (see, ely.pr[3] for details). We go back
to the beginning and choose a new initial vector.

e The changéb; — by| might be less than some tolerarcéVe can use this
as a criterion for stopping, iterating until it is satisfied, with a maximum
of 5 — 10 iterations, say.

e After a few iterations, iflby1 — bg| is not decreasing rapidly enough,

we can try updating the eigenvalue according to (11.7.10)..1f; = 7%

to machine accuracy, we are not going to improve the eigenvector much
more and can quit. Otherwise start another cycle of iterations with the
new eigenvalue.

The reason we do not update the eigenvalue at every step is that when we solve
the linear system (11.7.6) bikU decomposition, we can save the decomposition

Th4+1 = Tk + (11.7.10
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11.7 Eigenvalues or Eigenvectors by Inverse Iteration 489

if 7 is fixed. We only need do the backsubstitution step each time we update
The number of iterations we decide to do with a fixedis a trade-off between the
quadratic convergence bat(N?3) workload for updatingr; at each step and the
linear convergence b@ (N 2) load for keepingr, fixed. If you have determined the
eigenvalue by one of the routines given earlier in the chapter, it is probably correct
to machine accuracy anyway, and you can omit updating it.

There are two different pathologies that can arise during inverse iteration. Th
firstis multiple or closely spaced roots. This is more often a problem with symmetrlc
matrices. Inverse iteration will find only one eigenvector for a given initial gugss
A good strategy is to perturb the last few significant digitsirand then repeat the
iteration. Usually this provides an independent eigenvector. Special steps general
have to be taken to ensure orthogonality of the linearly independent eigenvectors
whereas the Jacobi argll. algorithms automatically yield orthogonal eigenvectors
even in the case of multiple eigenvalues.

The second problem, peculiar to nonsymmetric matrices, is the defective cases
Unless one makes a “good” initial guess, the growth factor is small. Moreover,
iteration does not improve matters. In this case, the remedy is to choose rando
initial vectors, solve (11.7.6) once, and quit as socargector gives an acceptably
large growth factor. Typically only a few trials are necessary.

One further complication in the nonsymmetric case is that a real matrix can
have complex-conjugate pairs of eigenvalues. You will then have to use complexs
arithmetic to solve (11.7.6) for the complex eigenvectors. For any moderate-size
(or larger) nonsymmetric matrix, our recommendation is to avoid inverse iteration
in favor of a @R method that includes the eigenvector computation in complex
arithmetic. You will find routines for this ifit,2] and other places.

By
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